Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 379(6634): eabo0431, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36264828

RESUMEN

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.

2.
Sci Adv ; 8(46): eabo7239, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36264781

RESUMEN

The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.

3.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170292

RESUMEN

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Asunto(s)
Isótopos de Carbono/análisis , Deuterio/análisis , Isótopos/análisis , Meteoroides , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Hidrógeno/análisis , Neón/análisis , Gases Nobles/análisis , Nave Espacial
4.
Science ; 306(5693): 89-91, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15459384

RESUMEN

We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.


Asunto(s)
Sedimentos Geológicos/química , Plutonio/análisis , Silicatos/química , Circonio/química , Cristalización , Planeta Tierra , Evolución Planetaria , Semivida , Isótopos/análisis , Plomo/análisis , Espectrometría de Masas , Tiempo , Uranio/análisis , Australia Occidental , Isótopos de Xenón/análisis
5.
Science ; 297(5587): 1658-9, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12215635
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...